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Level-set based numerical simulation of a migrating and
dissolving liquid drop in a cylindrical cavity
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SUMMARY

In the present paper the dissolution of a binary liquid drop having a miscibility gap and migrating
due to thermo-solutal capillary convection in a cylindrical cavity is studied numerically. The interest in
studying this problem is twofold. From a side, in the absence of gravity, capillary migration is one of
the main physical mechanisms to set into motion dispersed liquid phases and from the other side, phase
equilibria of multi-component liquid systems, ubiquitous in applications, often exhibit a miscibility gap.
The drop capillary migration is due to an imposed temperature gradient between the cavity top and
bottom walls. The drop dissolution is due to the fact that initial composition and volume values, and
thermal boundary conditions are only compatible with a �nal single phase equilibrium state.
In order to study the drop migration along the cavity and the coupling with dissolution, a previously
developed planar two-dimensional code is extended to treat axis-symmetric geometries. The code is
based on a �nite volume formulation. A level-set technique is used for describing the dynamics of the
interface separating the di�erent phases and for mollifying the interface discontinuities between them.
The level-set related tools of redistancing and o�-interface extension are used to enhance code resolution
in the critical interface region. Migration speeds and volume variations are determined for di�erent drop
radii. Copyright ? 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In absence of gravity, capillary migration is one of the main physical mechanisms to set
into motion dispersed liquid phases [1]. In several technological processes such phases are
constituted by multi-component mixtures exhibiting a miscibility gap. Liquid mixtures con-
stituted by the same components exhibit a miscibility gap if they coexist, in a given range
of temperatures, in di�erent phases at di�erent compositions. A miscibility gap in the liquid
phase is found in several di�erent physical systems: metal alloys, mixtures of organic liquids,
sulphides and silicates systems, glasses and liquid crystals, and many industrial applications
are based on miscibility gap and related phenomena.‡ These two considerations promote the
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interest in studying the coupling between the migration and dissolution in multi-phase �ows
of multi-component liquid mixtures.
In the present paper the dissolution of a binary liquid drop having a miscibility gap

and migrating due to thermo-solutal capillary convection in a cylindrical cavity is studied
numerically.
The drop capillary migration is due to an imposed temperature gradient between the cavity

top and bottom walls. The drop dissolution is due to initial composition and volume values
of both phases and thermal boundary conditions which are only compatible with a �nal
single phase equilibrium state. Local thermodynamic compositional equilibrium conditions at
the drop inner and outer faces give rise to exchanges of total and partial mass between the
phases through the interface that, in turn, determine the drop dimensions with varying the time
and, in a large times scale, take the system towards the afore-mentioned global equilibrium
state. As it will be shown, the evolution towards the �nal equilibrium is strongly a�ected by
the drop initial radius.
Since capillary migration of drops is strongly a�ected, on Earth, by buoyancy due to both

di�erent densities of the mixture components and Boussinesq e�ects, the dissolution due to
a miscibility gap and its in�uence on migration can be pro�tably studied in microgravity. In
fact microgravity experiments on miscibility gap were conducted for more than two decades
on almost every kind of microgravity platform (see footnote ‡). It must be noted that thermo-
solutal gradients due to dissolution and latent heat of phase change can trigger, on Earth,
strong buoyancy driven �ows within the immersed and hosting phases also if they are in
Plateau con�guration, i.e. have similar densities. Solutal buoyancy e�ects can also a�ect the
dissolution process in absence of migration f.i. in isothermal conditions.§
In order to study the drop migration along the cavity and the coupling with dissolution, a

previously developed planar two-dimensional code has been extended to treat axis-symmetric
geometries. The code is based on a �nite volume formulation. A level-set technique is used
for describing the dynamics of the interface separating the di�erent phases and for mol-
lifying the interface discontinuities between them. The level-set related tools of redistanc-
ing and o�-interface extension are used to enhance code resolution in the critical interface
region.
The simulations presented here are part of the research activities in both experimental

and numerical �eld carried out at MARS Center for the preparation of a sounding rocket
space experiment on the thermo-solutal capillary migration of dissolving drops to be hosted on-
board the MAXUS 5 sounding rocket, in INEX-MAM facility, and �own in
spring 2003.
The liquids selected for the sounding rocket experiment and used in numerical simulations

are cyclohexane (C6H12) and methanol (CH3OH). This couple of liquids has been selected
because: (i) the components have nearly the same density; (ii) the liquids are transparent,
allowing either the direct visualization of the drop migration and deformation either the use
of optical diagnostics devices and (iii) their mixture has a critical temperature of 45:7◦C,
slightly larger than the ambient one and compatible with the INEX-MAM facility thermal
requirements.

§MARS report: “Bread-Board Activities Test Report for Drop Dissolution and Migration Experiment”, 2001.
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2. NUMERICAL MODELLING UPGRADE

The present problem was already studied in a planar 2D geometry see for example in
References [2–4]. In the present paper the previous code is extended to treat 2D axis-
symmetric problems. This allows to correctly describe the physics of the migration process
preserving the real topology, geometry and dynamics of the thermo-�uid dynamic �eld oc-
curring during the space experiment.
The drop interface evolution is modelled by the level set technique, proposed by Osher and

Sethian [5], in which the interface is represented by the zero level set of a scalar function
de�ned within the computational domain. In order to maintain the level function and related
quantities well-behaved during motion, this function is reinitialized as a distance function
at each time step following Smereka et al. [6] and Peng et al. [7]. In order to model the
interface dynamics more accurately than in previous works [2, 3], we extend the interface
speed away from the interface, following the idea of Adalsteinsson and Sethian [8] and using
the extension algorithm proposed by Peng et al. [7]. To this end we rewrite the level-set
equation in a di�erent form, more appropriate to interface extension, slightly di�erent from
the one-used in Reference [4]. We also use the extension algorithm to increase the accuracy
of the momentum production terms. Since the level function needs to be de�ned only in a
neighbourhood of the interface, the algorithms for redistancing and o�-interface extension are
localized as suggested in Reference [7] to reduce runtimes.
A third major modi�cation to previous codes is a di�erent formulation of the energy equa-

tion. In the past works the internal energy was used as dependent variable. Since the internal
energy has a discontinuity at the interface due to the jump in the speci�c heat coe�cient,
its use was responsible for a poor accuracy in the calculation of the energy equation near
the interface, which in turns gave temperature pro�les with kinks not located on interface but
slightly outside. It also gave a too small energy �ux entering within the drop, a crowding of
isotherms around it, and ultimately a tendency of the drop surface to become isotherm during
migration. These problems, much more relevant in the axis-symmetric case than in the planar
one, have been avoided by using as dependent variable the temperature, which is continuous
at interface and has a discontinuity in the normal derivative only.

3. LEVEL-SET METHOD

In the level-set method for advancing fronts, the front, in our case the interface �(t), is
represented at each instant of time t by the zero level set of a smooth scalar function �.
Let x(t) be a representation of �(t) and Vi(t)= ẋ(t) its velocity. Assume also that x(0) is
implicitly de�ned by the equation �(x(0); 0)=0. The evolution equation for � is described
by the scalar equation of Hamilton–Jacoby type:

�t + Vi · ∇�=�t + Vin|∇�|=0 (1)

where ∇ is the nabla operator. In fact this equation states that, since at the initial time � is
constant along the curve � moving in normal direction with speed Vin = n·Vi, it will be constant
there also at later times. In writing the second equality above, we have exploited the fact that
the unit vector n normal to �; � being constant along it, can be written as n=∇�=|∇�|. Note
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that the dynamics of � is fully described by Vin only. In the following we assume that � is
positive outside � and negative inside it so that n points outside �.

4. LEVEL-SET RELATED TOOLS

In multiphase �ows the level-set function is used not only for following the evolving front,
but also for smoothing interface discontinuities, de�ning the dependent variables in the whole
domain, expressing front related geometric quantities and interface production terms appearing
in the coupling interface boundary conditions.
Following Smereka [9] and Sussman et al. [6], the generic dependent variable f is expressed

in terms of the Heavyside step function h(�) as f=(fext −fint)h(�) +fint and the interface
source terms (of linear density f) are expressed as volume source terms, thanks to the equality∫

�
f d�=

∫
�
f|∇�|�(�) d�=

∫
�
fn · ∇h d� (2)

where �(�)=dh=d� is the Dirac delta function, ∇h(�)=∇��(�) and � a volume neigh-
bourhood of the zero level set �, i.e. a strip centred on �.
In terms of the level-set function the trace k of the curvature tensor reads

k =∇ · n=∇ · (∇�=|∇�|)= (∇2�−∇|∇�| · ∇�=|∇�|)=|∇�|

= (�xx�2y − 2�xy�x�y + �yy�2x)=x(�2x + �2y)3=2 + �x=x(�2x + �2y)1=2 (3)

and the immersed phase volume and centre of mass read

vol=2�
∫
(1− h�)x dx dy ycm =2�

∫
(1− h�)xy dx dy=vol (4)

where the integrals are extended on the whole computational domain.
The sign, Heavyside and Dirac functions are molli�ed as

�¡− � sgn�(�)= − 1 |�|6� sgn�(�)= sin(��=2�) �¿� sgn�(�)=1 (5)

h�(�)= [1 + sgn�(�)]=2 ��(�)=dh�=d� (6)

where �=m�x.

5. MODEL ASSUMPTIONS

Two liquid binary mixtures constituted by the same components exhibit a miscibility gap
if they coexist, in a given range of temperatures, in two di�erent phases having di�erent
compositions.
A binary liquid-phase decomposition into two phases at di�erent composition can occur in

the case in which the Gibbs free energy G diagram versus concentration, at constant tempera-
ture and pressure, is not convex, but has two local extrema. The (unique) line simultaneously
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LIQUID DROP IN A CYLINDRICAL CAVITY 413

tangent at two points to the Gibbs free energy-mass fraction (c; G) diagram, individuates the
two states coexisting at equilibrium. Their composition is the one of the tangency points and
the partial Gibbs free energies, equal for both phases, are individuated by the intersections of
the tangent with the vertical lines c=0 and 1. The two phases at di�erent composition can
coexist since the condition of phase equilibrium is the equality of chemical potentials of the
di�erent phases that coincide with the partial Gibbs free energies of the components.
Varying the temperature the above couple of points de�nes in the (c; T ) plane two branches

of the so-called ‘binodal’ curve. In this plane a second curve called ‘spinodal’ (internal with
respect to the binodal one) can also be drawn as the locus of points corresponding to the
in�exion points of the G(c) curve in the (c; G) plane. With increasing the temperature the
tangent and in�exion points of the (c; G) plane collapse in the same minimum point (with
vanishing second and third order derivatives). This points corresponds to the critical point of
the (c; T ) plane, in which the two branches of the binodal and spinodal curves converge with
horizontal tangent. The region between binodal and spinodal lines is of metastable equilibrium
and that between the branches of the spinodal line of unstable equilibrium.
The equilibrium methanol concentration c of each phase is reported as function of the

temperature T in the equilibrium diagram in the (c; T ) plane of Figure 1. The two branches of
the equilibrium diagram, representing the equilibrium concentrations of the coexisting phases,
match at the critical point where dc=dT =∞ and the two phases merge in a single phase. It is
supposed that at interface the concentrations are the equilibrium ones at the local temperature
and that equilibrium always occurs at the binodal line of Figure 1.
Theoretical models for calculating the equilibrium curve are available and are particularly

helpful for ideal solutions, but di�erences in atomic radius and bonding are responsible for
possibly large discrepancies between real and ideal behaviour [10]. Having cyclohexane and
methanol largely di�erent molecules, their equilibrium phase diagram is given by points.

Figure 1. Cyclohexane-methanol phase diagram.
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The surface phase is modelled as a pure interface. The surface tension � is assumed
to depend on temperature and equilibrium concentrations �=�(T; c+(T ); c−(T )) where the
superscript ‘+=−’ indicates the external=internal side of the interface. At the critical point the
di�erent phases merge in a single phase and thus �cr = 0. Since the equilibrium concentrations
depend on the temperature one can assume �= �̂T0(T − Tcr) [3]. According to experimental
data �̂T0¡0.
The motion being incompressible, the density � is constant in each phase. As cyclohexane

and methanol have nearly the same density, the di�erence �+ − �− is neglected.

6. INTERFACE BOUNDARY CONDITIONS

Mass conservation implies the continuity of the mass �ow rate ṁ through the interface

ṁ= ṁ±= {n · �(V − Vi)} (7)

where {f}=f+ − f− is the jump operator and the superscript ‘+’ indicates the domain
towards which n points.
Due to the hypothesis of phases of equal density, the normal component of the velocity

Vn= n · V is continuous, but it di�ers from the interface normal speed

n · Vi=Vin =
(
n · V − ṁ

�

)±
(8)

It is worth noting that this last equation holds also in the case of a discontinuous density.
In the present problem the mass �ow rate through the interface ṁ is obtained by imposing

the conservation of the mass of each species at interface, i.e. the continuity of the normal
total �ux of species F

{F}= ṁ{c} − {n · �D∇c}=0 (9)

and it is thus given by

ṁ= {n · �D∇c}={c}= �(�Dcn)+ − (�Dcn)−�=[c+ − c−] (10)

The local mass fraction �ux through the interface F is

F =F±= ṁc± − (�Dcn)±= �c−(�Dcn)+ − c+(�Dcn)−�=[c+ − c−] (11)

where the second equality (11) is obtained by substituting Equation (10) in Equation (11).
The above formulae show that the same terms occurring in ṁ appear also in F but are
di�erently weighted. Thus these two �uxes may or may not have the same sign, depending
on the actual values of the concentration and their normal derivatives at opposite sides of the
interface.
As said before, the concentrations at interface sides c± are constrained to lie on the equi-

librium curve at the local temperature. These concentration values, together with those of the
concentration normal derivatives, in turn de�nes the entity of the interface dissolution cross-
�ow, species �ux and interface normal velocity relative to the �uid, according to, respectively,
Equations (10), (11) and (8). This last equation reads

Vin = (n · V − [(Dcn)+ − (Dcn)−]=[c+ − c−])± (12)
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The �ow being viscous, temperature and tangential velocity are assumed to be continuous at
interface.

7. INITIAL AND EXTERNAL BOUNDARY CONDITIONS

The cavity containing the drop and the external liquid matrix is cylindrical. At the initial time
the velocity is zero everywhere, the temperature is linearly strati�ed in axial direction, i.e.
it is a linear function of the axial co-ordinate, the concentration is uniformly equal to one
inside the drop c−0 = 1, and to zero outside c

+
0 =0. The drop is spherical with radius R and

its centre is located on the symmetry axis at an ordinate y0. The concentrations along the
drop inner and outer faces are �xed by the local temperature according to the equilibrium
curve. The initial time discontinuity between the inner (outer) drop surface and the interior
(exterior) is regularized by a complementary error function pro�le decaying in few cells
c= c±0 + (c

± − c±0 ) erfc (± k�=�) where k=2:5, �=5�x.
On the cavity walls the velocity vanishes. Top and bottom walls are held at constant di�erent

temperatures, Tt and Tb respectively, with Tt¿Tb, the lateral wall is adiabatic, i.e. Tn=0 at
the lateral boundary. There is no di�usion of species through the cavity walls, i.e. cn=0 all
along the cavity boundary. The boundary and initial conditions are sketched in Figure 2.

Figure 2. Initial and boundary conditions.
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8. MOTION EQUATIONS

In the following p is the average normal stress, � the dynamic viscosity, 	 the kinematic
viscosity, cs the speci�c heat coe�cient, 
 the thermal di�usivity, � the thermal conductivity
and D the di�usion coe�cient.
The motion equations are formulated in a standard imbedded boundary approach by de�ning

the dependent variables in the whole domain, as shown in Section 2. The transport properties,
speci�c heat and density are constant in each phase. The non-dimensional motion equations
for the present problem can be written as

∇ · V =0 (13)

Vt +∇p=∇ · ��(∇V + (∇V )T)=Re − VV �

+[(T − Tcr −WeT=We)kn−∇sT ](n · ∇h)=WeT (14)

Tt +∇ · (TV )−∇ · (�∇T )=csMa = 0 (15)

ct +∇ · [V −D∇c=Re Sc] = 0 (16)

�t + Vin|∇�| = 0 (17)

where the superscript ‘T’ indicates transposition, ∇s =∇−n@=@n is the surface nabla operator,
k the interface curvature and the non-dimensional density is omitted being uniformly equal
to one. The non-dimensional characteristic Schmidt Sc, Reynolds Re, Marangoni Ma, Weber
We and thermo-solutal Weber WeT numbers are given by

Sc= 	r=Dr Re=RVr=	r Ma=RVr=
r We=V 2r �rR=�̂0 WeT =V 2r �rR=|�̂T0|Tr (18)

As reference quantities, we choose

Vr = |�̂T0|Tr=�r Lr =R tr =R=Vr pr =�rV 2r Tr = (Tt − Tb)R=H (19)

while csr ; Dr ; �r ; �r and �r are those of the external �uid. One has WeT =Re. Energy
dissipation due to momentum di�usion is neglected.
Since the latent heat of phase change is small for the considered system the corresponding

term in the energy equation (15) is neglected. This amounts to have a continuous di�usive
heat �ux. This approximation will be removed in a forthcoming paper.

9. NUMERICAL IMPLEMENTATION

This section is devoted to numerical implementation. The algorithm for motion equations
is detailed in the �rst sub-section. Level-set related tools of redistancing and o�-interface
extension are treated in the following sub-sections. All the algorithms of this section are
localized as in Reference [7]. A �ow diagram of the steps taken during each iteration is
shown in Figure 3.
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Figure 3. Flow diagram summarizing the steps taken in the numerical algorithm.

9.1. Motion equations algorithm

The system of motion equations in conservation form was solved by a �nite volume approach
on a staggered grid. The �uxes were evaluated by essentially non-oscillatory (ENO) upwind
biased three points formulae, di�usive �uxes with second order centred formulae. The ordinary
Chorin–Temam projection method was used to determine the indivergent velocity vector �eld.
The pressure Poisson equation was solved with a successive over relaxations (SOR) algorithm.
The space semi-discretized equations were advanced in time with a �rst-order Euler explicit
time stepping.
The level-set function derivatives occurring in the expression of k in Equation (3) are

calculated with second-order centred formulae.
Since the simultaneous jump singularities of concentration and concentration normal deriva-

tive, referred to in Section 3, cannot be easily molli�ed while retaining the necessary accuracy
of the cross-�ow rate, a scheme for the species equation allowing sharp jumps and having
subcell resolution was conceived in References [2–4] and detailed in Reference [4]. Since
the species equation numerics are already discussed there they are not readdressed here. The
same algorithm is used here with only minor modi�cations needed to take into account the
axial symmetry.
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418 E. BASSANO

9.2. Redistancing algorithm

Functions d such that |∇d|=1 everywhere are called distance functions. Accuracy requires
that the level-set function � has this property. Even if one initializes � as a distance function,
� can smear out or steep. To ensure that � remains a distance function at least near the
interface, Sussman et al. [6] proposed to reinitialize � at each step by solving the hyperbolic
equation to steady state

d�=sgn (�) (1− |∇d|) d(x; 0)=�(x; t) (20)

where � plays the role of a parameter. The redistancing problem is of Hamilton–Jacoby type.
A semi-discretized approach is used to solve Equations (20). For the space discretization the
general Godunov numerical �ux function proposed by Osher and Shu [11] is used, calculated
as shown in Jiang and Peng [12].
The �fth order weighted essentially non-oscillatory (WENO) scheme proposed by Jiang and

Shu [13] is used for the calculation of the derivatives. Third order total variation diminishing
(TVD) Runge–Kutta algorithm of Gottlieb and Shu [14] is used for time integration.
In order to ensure the necessary accuracy of the curvature and to enhance volume conser-

vation during redistancing, the sign function is molli�ed as proposed in Peng et al. [7]. This
prevents errors due to node crossing by the zero level set during reinitialization and allows
adapting stencil support according to the local value of the gradient modulus.

9.3. O�-interface extension algorithm

The o�-interface extension of a generic quantity f is performed by solving the following
Hamilton–Jacoby equation

f� + sign (�) n · ∇f=0 f(x; 0)=f(x; t) (21)

until steady state. At the steady state the function f is constant in the direction of n (in which
� varies)

n · ∇f=0 ∇� · ∇f=0 (22)

and is equal to the value it has on the zero level set. Since extending f o� the interface
amounts to zeroing its normal derivative, the gradient of f calculated after the extension
retains its tangential contribution only.
If a locally constant function f is multiplied by a (symmetrically) molli�ed Dirac function

the extrema of the product function are all located on the zero level set and coincide with
f(0) ��(0). If f, instead, is locally strictly monotone, the extrema of the product function
do not fall on the zero level set and di�er from f(0) ��(0). These properties of extended
functions are exploited for the evaluation of the normal and tangential momentum production
terms

((T − Tcr)=WeT − 1=We) k|∇�| � (�) n − (∇sT=WeT)|∇�| � (�) (23)

According to above observations temperature (and curvature) extension give a more accurate
evaluation of the �rst term. The tangential gradient in Equation (23) is calculated as ∇sT =
(I − nn)∇T =∇T − n@T=@n. Here temperature extension makes vanishing the normal compo-
nents of the temperature gradient, that it is important to note are discontinuous, leaving only
the tangential contribution which is instead continuous.
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Following Peng et al. [7], also the interface velocity in Equation (1) is extended o� the
interface. Numerical experiments revealed that the extending procedure greatly enhances the
simulation accuracy avoiding the appearance of spurious vortical structures within the interface
strip and allowing for a far better resolution of the curvature.
The integration of Equation (21) is performed using formulas similar to those of the pre-

vious sub-section.

10. RESULTS

The INEX-MAM cell is 3 cm wide, 3 cm deep and 6 cm long in the temperature gradient
direction. The 2D axis-symmetric simulation domain corresponds to the right half of an axial
planar section of a cylindrical cavity having a radius of 3 cm and a height of 6 cm.
At the initial time t=0 s, the centre of drop is located on the symmetry axis. The drop

centre distance from the lower wall is 1 cm. We considered three di�erent drop radii:
R=0:25; 0:5 and 0:75 cm. The cold temperature Tb is set to 15◦C, the hot one, Tt , to 55◦C.
Accordingly the imposed temperature gradient is 6:66◦C=cm. Initially the temperature pro-
�le is linearly strati�ed between the upper and lower wall temperatures, the drop is of pure
methanol, the surrounding matrix of pure cyclohexane, both phases are quiescent.
The properties of the �uids used in the simulations are reported in Table I. Non-dimensional

characteristic numbers depending only on �uid properties, Prandtl and Schmidt numbers are
also reported in the same table. Internal and external Reynolds and Marangoni numbers,
depending on R, are listed in Table II.

Table I. Properties of cyclohexane and methanol.

Cyclohex. Methanol

� 0.779 0.779
� 0.980 e− 2 0.790 e− 2
	 1.258 e− 2 1.014 e− 2
� 1.248 e 4 2.020 e 4
cs 1.859 e 7 2.533 e 7
D 1.000 e− 5 1.000 e− 5
�T −0:01
Pr 14.60 9.904
Sc 1258 1014

Table II. External and internal Reynolds and Marangoni numbers based on the properties of
Table I for three radii.

R Reext Maext Reint Maint

0.25 34 493 42 415
0.5 135 1974 168 1661
0.75 304 4441 377 3737
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Figure 4. Concentration isolines at start-up, t=14:7 s for R=0:25 cm, t=10:3 s for R=0:5; 0:75 cm.

The computational grid in the axial semi-plane is composed of 60× 240 square cells,
80× 320 square cells are used for the smaller drop. Preliminary tests showed that used grids
are su�ciently re�ned for large and medium drops, while grid re�nement is probably re-
quired for the small drop, but has not been pursued here due to the large computational
times required. In all simulations we use m= 1

2 in Equations (4) and m=3 in Equations (5)
and (6).
During the initial start-up phase of the drop motion, which is similar for all cases, both

internal and external liquids are dragged along the drop surface by the interface tension
gradient. The internal �uid dragged along the interface is warmer than the drop bulk, which is
wrapped and tends to stay cold due to the large internal Peclet number. When the inner surface
driven �ow reaches the rear pole, it rises along the symmetry axis, reaches the front region
and then �ows back, creating a ring vortex inside the drop as evidenced by the concentration
isolines of Figure 4(a)–(c) (the radius increases from left to right). At the same time the
external �uid dragged along the external side of the drop creates a warm wake behind the
drop, entraining the cold bottom region of the cavity Figure 5(a)–(c) (the radius increases
from left to right).
After a sudden acceleration, due to the rise of surface tension forces, the drop velocity

decreases, since the isotherms wrap around the drop, whose surface tends to become isotherm.
The drop vertical velocity versus time is plotted in Figure 6. After the initial deceleration
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Figure 5. Temperature isolines at start-up, t=1:47 s for R=0:25 cm, t=2:94 s for R=0:5; 0:75 cm.

Figure 6. Drop vertical velocity versus time. Triangles R=0:25 cm,
circles R=0:5 cm and squares R=0:75 cm.

occurring whatever is the radius during the �rst 10 s, the medium and large drops start newly
to accelerate and their speed increases until the drop stops at the hot wall of the cavity.
Particularly, the medium drop reaches a larger velocity having a longer path to migrate before
touching the hot wall. On the contrary, for the small drop, the initial deceleration creates a
wave in the front of the drop that destroys the strati�ed linear pro�le and determines a drop
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Figure 7. Wall temperature gradient perturbations for the three radii of Table II.

slowing, as shown by the temperature distribution in Figure 7(a). This behaviour is due to the
fact that the small drop cools more quickly than larger drops and its surface becomes nearly
isotherm. At later times the temperature ceases to decrease monotonically along the surface
of the small drop and the interface tension maximum ceases to be located on the symmetry
axis. This leads to the inversion of the direction of the interface tension near the interface
fore pole. The inverted �ow region grows and gives rise to a second (counter-rotating) vortex
within drop. The outer �uid in the front of the drop is pushed up towards the hot wall and
the inner �uid is pushed back down towards the drop centre, as indicated by the isotherms
of Figure 7(a). The occurrence of the reverse �ow in front of the smaller drop has been
observed both on di�erently re�ned grids and with di�erent stencils for the convective terms
so it does not seem to be a numerical artifact.
As shown in Figure 7(a)–(c) (the radius increases from left to right), the strati�ed tem-

perature pro�le near the lateral wall is: left almost unperturbed by the small drop, slightly
perturbed by the medium drop, highly distorted by capillary convection around the largest
drop. Therefore, the largest drop migrates subjected to a non-uniform temperature gradient.
During its ascent every drop warms up, as shown in Figure 7(a)–(c). The smaller is the

radius the warmer is the drop and the faster is reduction of the thermal wake behind it.
No noticeable drop shrinking can be observed during the drops ascent as shown in

Figure 8, where the drop shapes are reported at constant intervals of time from bottom to top
of each picture.
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Figure 8. Drop shapes during the ascent. Initial time t=1:47 s, �t=4:41 s
for R=0:25 cm, �t=1:47 s for R=0:5; 0:75 cm.

Besides the thermal Marangoni convection, the concentration �eld is also a�ected by dis-
solution.
According to the initial conditions and binodal curve, the concentration decreases going

from the inner phase to the inner surface of the drop and still decreases going from the outer
surface towards the external phase. The internal vortical �ow that establishes after the start-up
is characterized by concentration values lower than those of the ring vortex core both near the
drop surface and along the axis. Obviously this is due to the fact that the low concentration
�uid had been convected along the interface, where the concentration was �xed by the binodal
curve, as shown in Figure 4(a)–(c). The outer �ow drags a more concentrated �uid in the
wake. In the �rst part of the drop rise, the concentration �eld follows the qualitative evolution
of the thermal �eld, as shown in Figures 4 and 5, even if the di�usion of matter is sensibly
lower than that of energy, Schmidt numbers being larger than Prandtl numbers. It must be
noted that the less concentrated �uid rising along the drop axis is convected downward by
the vortex ring before reaching the fore pole and the interface.
After a complete turn of the �uid along the drop surface and axis, the inner low (outer

high) concentration regions become larger due to the depletion (enrichment) of the �uid along
the interface, as one can see e.g. in Figure 9.
As shown in the same �gure, the mass fraction of the external phase changes slightly

and in the wake only, due to the very low di�usion coe�cient and to the low values of
the concentration along the left branch of the binodal curve of Figure 1. The mass fraction
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Figure 9. Concentration isolines during ascent. t=58:8 s for
R=0:25 cm, t=20:6 s for R=0:5; 0:75 cm.

variations are instead appreciable within the drop. Here the concentration changes from the
initial unit value to values lower than 0.7 at the drop inner surface. The unit concentration
persists in a region near the ring vortex core.
Di�erently from the case of the mass �ow through the interface discussed below, no con-

clusions on the sign of the concentration �ux, given by Equation (11), can be drawn a priori,
since the two terms in the r.h.s. are about the same order of magnitude at the initial time. The
positiveness of the concentration �ux through the interface during migration is revealed by
the already noted increase of the concentration outside the drop and in the wake. However,
it is important to underline that, according to Equations (10) and (11), dissolution can also
occur while the volume increases, i.e. partial mass �ux can be positive even if the mass �ux
is negative.
In the present problem the volume �ow through the drop interface is proportional to the

mass �ow, the phases being isodense and the �ow incompressible. The local mass �ow
through the interface ṁ, according to Equation (10), is proportional to the di�erence of the
concentration normal derivatives and inversely proportional to the concentration jump, which
depends on the local temperature and goes to zero at the critical point. Thus, according to
Figure 1, the denominator of (10) is always negative, the concentration of methanol being
larger in the inner phase. An increase of temperature can cause an increase of the intensity
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Figure 10. Normalized drop volume variation de�ned as (vol(t)=vol(0) − 1), where vol(0) is the ini-
tial drop volume. Triangles R=0:25 cm, circles R=0:5 cm and squares R=0:75 cm. Empty symbols
correspond both Marangoni migration and dissolution. Filled symbols to migration without dissolution.

of ṁ but not a sign change. At initial time the concentration normal derivatives are both
negative. The initial conditions and the binodal curve make the inner normal derivative, in
modulus, fairly larger than the external one, of about an order of magnitude. This leads to
the conclusion that at least for short times the drop volume shall increase. In absence of
convection, volume variation should occur in times of the order of the di�usive characteristic
time R2=D and then the volume should increase for quite long times.
The drop relative volume variation vol=vol(0)−1 is plotted versus time in Figure 10, where

the empty symbols refer to dissolution and the �lled symbols refer to absence of dissolution.
The volume variation in the second case (only Marangoni migration) should be zero in all
cases. A value of about 4% indicates that a grid re�nement is still necessary for small drops.
Medium and large drops grow slightly and slowly while smaller drops grow more and faster.
Nevertheless the comparison of corresponding curves shows that dissolution is responsible

of an increase of dimensions. At start-up the drop cold core is wrapped by the warmer �uid
dragged by interface tension along its surface. Since the energy exchange by heat between the
rising drop and the surrounding phase is very small, the drop tends to stay cold. Accordingly,
the external isotherms encountered by the drop during the ascent slightly penetrate within the
drop and fold over it. The drop pushes the isotherms up and constrains them in a narrow
thermal boundary layer, surrounding the drop and having a steep normal temperature gradient,
as shown in Figures 5 and 7.
Therefore the temperature on the drop surface does not change appreciably during the rise

and remains lower than the one corresponding to the unperturbed strati�ed pro�le at the actual
height. Correspondingly the concentration jump across the interface (c+ − c−), appearing in
the denominator of Equation (10), neither goes to zero nor decreases appreciably and the
mass �ow rate ṁ remains bounded also in the upper part of the cavity, where the unperturbed
temperature is higher than the critical one.
In Figures 11–14 are plotted the concentration pro�les in planes passing through the cell

centre nearest to the drop centre of mass and inclined at 90◦, 0◦, −90◦ w.r.t. the horizontal
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Figure 11. Radial concentration distribution for R=0:25 cm along three
di�erent radial directions at t=1:47 s.

Figure 12. Radial concentration distribution for R=0:25 cm along three
di�erent radial directions at t=23:5 s.

for the small drop at di�erent increasing times. The plots show a neighbourhood of the
interface. Here the displacement of the interface position in di�erent sections is mainly due
to the fact that intersection planes are not exactly barycentric. The remarkable di�erences in
the concentration pro�les within the drop are due to the fact that the ± 90◦ pro�les lie along
the axis, where the low concentration �uid coming from the drop inner surface rises, pushed
by the inner Marangoni �ow, while the 0◦ pro�le cuts the high concentration region of the
ring vortex core. The di�erence of the outer concentration pro�les is due to the fact that the
90◦ and 0◦ pro�les extend in unperturbed regions while the −90◦ pro�le extends in the wake.
The line connecting the inner and outer concentration is added by the visualization software
but it must not be considered as part of the pro�le since in our calculation the concentration
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Figure 13. Radial concentration distribution for R=0:25 cm along three
di�erent radial directions at t=50 s.

Figure 14. Radial concentration distribution for R=0:25 cm along
three di�erent radial directions at t=72:1 s.

jump is sharp. The normal derivatives (coinciding with the radial derivatives since the drop
is nearly spherical) are given by the pro�le slopes at the sides of the interface represented
by the almost vertical segment. In the present case Equations (10) and (11) can be written,
respectively, as

ṁ=�D(−|c−n |+ |c+n |)=|c− − c+| F =�D(−c+|c−n |+ c−|c+n |)=|c− − c+| (24)

where the normal co-ordinate n increases like the radial one. By comparing the inner and
outer slopes at the interface, one deduces that the mass �ow through the interface is large
and negative for the horizontal pro�le. Since the same happens also for a large part of the
radial pro�les (not displayed in the �gures), the global exiting mass �ux (the integral of ṁ
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Figure 15. Radial concentration distribution for R=0:25 cm along three
di�erent radial directions at t=16:2 s.

along the interface) is negative and the drop increases in volume. At later times the volume
growth �rst decreases and then stops as shown by the curve in Figure 9 and by the pro�les
of Figures 11–14. At still larger times, simulated for the small drop only, the drop volume
decreases as expected.
Since c−�c+ and the inner normal derivative is small at both poles for the small drop,

according to Equation (24), the methanol �ux is positive at poles and a methanol plume
develops there as shown in Figure 15. For medium and large drops the methanol plume is
instead present only at the rear pole.
In the case of small drop, even if energy di�usion is quite limited, it is nevertheless su�cient

to reduce drop temperature, due to the reduced drop dimensions. The migration of the small
drop is also slower and the drop has a larger time to adapt itself to the external conditions.
The increase of the drop surface temperature, through the concentration jump at the interface,
also contributes to a volume variation faster than that of bigger drops. Finally it must be
considered that a given volume variation, when normalized w.r.t. the initial volume, increases
with decreasing the initial dimensions.

11. CONCLUSIONS

In the present paper the thermo-solutal-capillary multiphase �ow of a binary mixture exhibiting
a miscibility gap is numerically investigated. A �xed grid level-set based algorithm is used
in order to follow the drop motion allowing it to deform freely. A high-order redistancing
algorithm is used to enhance the accuracy of the level-set approach. In order to obtain an
accurate evaluation of the volume production terms coming from the level-set formulation of
the boundary conditions between the di�erent phases, an o�-interface extension algorithm is
used for the correct location of distributions, molli�cation, and �ltering of the quantities related
to such terms. It is noteworthy that in the present paper both tangential stresses and mass �ow
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through the interface are considered. A previously developed and tested algorithm [4], able to
resolving the concentration interface singularity and evaluating the interface cross-�ow, is used
for the mass fraction equation. Numerical simulations show that the concentration singularity
is quite well resolved also in this axis-symmetric case. The code models the transient start-up
phase and the following migration, and allows to evaluate the e�ects on migration of external
walls, di�erent drop dimensions and dissolution. The thermo-�uid dynamic �eld evolution is
discussed on the basis of the obtained numerical results.
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